66

更新時間: 2013-09-17

廣告

卟啉是一類由四個吡咯類亞基的α-碳原子通過次甲基橋(=CH-)互聯而形成的大分子雜環化合物。其母體化合物為卟吩(porphin,C20H14N4),有取代基的卟吩即稱為卟啉。

卟啉環有26個π電子,是一個高度共軛的體系,並因此顯深色。「卟啉」一詞是對其英文名稱porphyrin的音譯,其英文名則源於希臘語單詞,意為紫色,因此卟啉也被稱作紫質。許多卟啉以與金屬離子配合的形式存在於自然界中,如含有二氫卟吩與鎂配位結構的葉綠素以及與鐵配位的血紅素。人體內卟啉積累過多時會造成卟啉病,也稱紫質症。

卟啉 -性質

卟啉環的編號方式見上圖。習慣命名是將5,10,15,20位稱為meso位(間),將1,4,6,9,11,14,16,19位稱為alpha位(α),將2,5,7,8,12,15,17,18位稱為beta位(β)。

卟啉的大分子環是一個24中心26電子的體系,符合休克爾規則中的4n+2通式,因此具有芳香性。卟啉自由鹼的中心氮原子可以與+2或+3價的金屬陽離子配位,兩個氮上的氫原子被金屬取代,生成金屬卟啉。通常把它們及其衍生物稱為金屬卟啉化合物。其反應通式如下:

廣告

卟啉反應通式


四苯並四氮雜卟啉類化合物由苯酐與尿素在氯化亞銅存在下發生縮合製得,呈藍色,一般稱為酞菁。其分子中四個異吲哚環的氮原子可以與金屬離子在中心發生配位,生成金屬酞菁。金屬酞菁化合物色澤鮮艷耐曬,耐熱性能優良,著色力強,是很常用的顏料和染料。

以卟啉作為結構單元的超分子是目前分子器件研究的主要方向之一。meso-四苯基卟啉的氯化鐵配合物(TPPFeCl)是一個有機合成試劑。卟啉的衍生物有:咕啉、二氫卟吩(2,3-二氫卟啉)、菌綠素、F430(鎳四吡咯)等。

卟啉 -合成

實驗室合成
實驗室中,卟啉通常是用取代醛類和吡咯在酸中的縮合反應來合成的,並且一般需要用路易斯酸催化。反應的產率不高,反應後會產生大量的副產物,可以通過柱色譜法除去。卟啉環與金屬鹽(如溴化亞鐵)作用,可以得到相應的鍵聯金屬卟啉。

這個合成卟啉的方法一般被稱為羅斯曼法(Rothemund)或阿德勒法(Adler)。1936年Rothemund首先合成四苯基卟啉(TPP),他採用吡啶為溶劑,使苯甲醛和吡咯在封管中加熱反應數十小時,產率極低,並且可以參與反應的苯甲醛衍生物很少。後來,這個方法被Adler和Longo作了深入研究,改為用丙酸作介質,使芳香醛與吡咯迴流反應后,冷卻、過濾,濾餅用熱水和甲醇分別洗滌,真空乾燥晶體,得到卟啉。與Rothemund的方法相比,這個改進法可以獲得較高產率(20%)的卟啉,操作簡單,適用的取代苯甲醛也較多,因此一直沿用至今。

卟啉卟啉


生物合成
生物體內的卟啉合成以檸檬酸循環中的琥珀醯CoA與甘氨酸作原料。兩者發生Claisen縮合併脫羧生成δ-氨基乙醯丙酸(ALA),然後兩分子的δ-氨基乙醯丙酸縮合,生成含一個吡咯環的膽色素原(PBG)。膽色素原脫氨酶作用下,四分子的膽色素原反應得到羥甲基膽素(HMB),繼續反應得到尿卟啉原Ⅲ,構建出四吡咯環系的框架。尿卟啉原Ⅲ之後又分別轉化為糞卟啉原Ⅲ、原卟啉原Ⅸ和原卟啉Ⅸ,並在這裡分出了血紅素和葉綠素的合成系統。

卟啉 -參考資料
[1] 維基百科 http://zh.wikipedia.org/w/index.php?title=%E5%8D%9F%E5%95%89&variant=zh-cn

廣告

廣告