378

更新時間: 2013-07-16

廣告

化學風化(chemical weathering)岩石發生化學成分的改變分解,稱為化學風化。例如,岩石中含鐵的礦物受到水和 化學風化空氣作用,氧化成紅褐色的氧化鐵;空氣中的二氧化碳和水氣結合成碳酸,能溶蝕石灰岩;某些礦物吸收水分后體積膨脹;水和岩層中的礦物作用,改變原來礦物的分子結構,形成新礦物。這些作用可使岩石硬度減弱、密度變小或體積膨脹,促使岩石分解。

廣告

自然界的岩石都形成於特定的地質條件下,在高溫,高壓,少遊離氧的條件下處於相對穩定狀態。岩石一旦出露或接近地表,接受太陽的輻射熱,並與大氣圈,水圈和生物圈相接觸時,岩石不再保持穩定,而發生一系列的變化,如崩裂,分解成地表穩定的新礦物。這種使岩石在原地發生物理狀態或化學成分變化的破壞作用叫風化作用。通常將自地面往下一定深度有風化作用的地帶稱作風化帶。根據風化作用的因素、作用方式和性質,一般將其分為物理風化作用,化學風化作用和生物風化作用三種類型。
喀斯特地貌

  喀斯特地貌

化學風化
化學風化是地殼表面岩石在水及水溶液的作用下發生化學分解的作用。主要有溶解、水化、水解、氧化和碳酸化等幾種。如各種碳酸鹽岩可以溶解於含有CO2的水中。水化是指水直接參加到礦物中去,使某些礦物變成含水礦物,如硬石膏變為石膏等。氧化是指岩石在空氣和水中遊離氧的作用下,使其中低價元素轉變為高價元素、低價化合物轉變為高價化合物,如黃鐵礦中的低價鐵變為含高價鐵的褐鐵礦等。水解是指礦物與離解的水相遇引起分解的作用。如花崗岩中的正長石在濕熱氣候條件下,形成KOH溶液及SiO2膠體,隨水流失;另外形成不溶於水的高嶺石。4K[AlSi3O8]+6H2O 4KOH+ Al4[Si4O10][OH]8+8 SiO2高嶺石高嶺石進一步分解變為鋁礬土:Al4[Si4O10][OH]8+n H2O 2 Al2 O3?n H2O+4 SiO2+ 4H2O鋁礬土+4SiO2+4H2O岩石的化學風化和物理風化是互相聯繫和互相促進的,但在炎熱多雨的氣候條件下,化學風化特別顯著。
化學風化作用中表現最突出的是氧化作用和水及水溶液的作用。
氧化作用主要是遊離氧造成,它使低價元素變成高價元素,低價化合物變成高價化合物。含有低價鐵的硅酸鹽、硫化物最易受氧化作用影響。如黃鐵礦氧化形成褐鐵礦,其中的硫氧化后形成H2SO4併流失。水的作用主要有水化作用(水與礦物反應生成水合礦物,如赤鐵礦變為褐鐵礦)、水解作用(水電解生成的H+、OH-造成岩石破壞)。當水中含有溶質,尤其是酸性物質時,水的破壞作用就明顯加強,其中最常見的是CO2溶於水形成碳酸的溶蝕作用。在地表或接近地表的條件下,岩石礦物在原地發生化學變化並可產生新礦物的過程叫化學風化作用。
化學風化

  化學風化

化學風化作用的主要因素是氧和水溶液,其進行的方式主要有氧化作用和水溶液的作用。自然界的的水都是水溶液,它溶解有多種氣體和化合物,除具有溶解、水化和水解性能,還具碳酸化作用的能力。
化學風化作用破壞了原有礦物、岩石,產生了新的礦物岩石,其最終產物只有少數幾種,如殘餘紅土、殘餘高嶺石等。其原因在於化學風化作用過程受元素化學性質的支配,一切活潑元素都從礦物中風化出來並隨水流失,只有性質穩定的元素才殘留原地。右圖為化學風化造成的紅土型地貌。
礦物溶於水的過程就是溶解作用。在水與岩石相接觸時,溶解作用通常是岩石遭受化學風化作用的第一步。水是一種天然的溶劑,經過水的溶解作用,岩石中的易溶物質隨水流失,難熔物質殘留於原地。溶解作用形成的典型地貌即喀斯特地貌。
礦物中的低價元素與大氣中的遊離氧化合變為高價元素的作用,氧化作用更為強烈。把地殼表層進行氧化作用的範圍叫作氧化 帶,在地下水面較低、地形起伏較大、岩石裂隙發育以及濕潤氣候條件下,氧化帶較厚;在沼澤和終年凍結區,氧化帶只限於地面附近。
氧化作用可使一些金屬硫化物礦床的露頭髮生氧化形成由褐鐵礦組 成的紅褐色或黑褐色的產物,叫鐵帽。它指使其下埋藏有原生的金屬硫化物,是一種良好的找礦標誌。
有些礦物與水作用時,能夠吸取水分做為自己的組成部分(為結晶水或結構水,形成含水的新礦物,稱為水化作用。例如,硬石膏(CaSO4)經水化作用后形成石膏(CaSO4.2H2O)。
水本身可離解成H+、OH+離子,使水成為具活潑離子的離解溶液。各種弱酸強鹼或強酸弱鹼的鹽類礦物溶於水后,也出現離解現象,這些離解物可與水中活潑的H+、OH+離子發生化學反應,形成新礦物,這種複分解反應過程,稱為水解作用。地殼中最多的硅酸鹽和鋁硅酸鹽類礦物,它們是弱酸強鹼的化合物,易被水解作用而破壞。例如,鉀長石遇水可發生水解作用,開始析出的陽離子K+與水中的OH+離子結合,形成KOH隨水流失;析出一部分SiO2可呈膠體溶液隨水流失,或形成蛋白石(SiO2.nH2O)殘留於原地;其餘部分可形成難溶於水的高嶺石而殘留於原地。鉀長石被水解作用的化學反應為:
4K[AlSi3O8]+6H2O ------- 4KOH+8SiO2+Al4[Si4O10][OH]8
(鉀長石)  (高嶺石)
當水中溶有CO2時,與水結合形成碳酸,碳酸根易與礦物中的陽離子化合成易溶於水的碳酸鹽,從而使水溶液對岩石中的礦物離解能力加強,化學反應速度加快,這種化學作用稱碳酸化作用。

廣告

3影響因素

岩石的地球化學特徵是影響化學風化作用的主要因素。不同的岩石由於化學成分的不同,其化學活動性也明顯不同(主要表現在原子價、離子半徑、離子親和力、化合能力和極化能力等方面),容易被氧化、溶解的岩石出露區,總是化學風化作用較為強烈的地段。同一岩石中由於不同礦物成分的差異,也會造成風化作用的差異。
有機界的作用是化學風化過程中另一個重要的因素。在堅硬的岩石表面出現生物(微生物、苔蘚等)起,化學風化的作用就開始了。由於生物吸收的成分與岩石的成分有較大的差異,造成了岩石的風化。同時,生物的新陳代謝過程所產生的氧氣、有機酸等物質,加速了化學風化的進程。
氣候與環境同樣是影響化學風化過程的重要因素。乾燥炎熱的氣候使得氧化作用容易進行,潮濕的氣候則使得溶解作用、水解作用易於發生。地形會影響氣候條件,山地的垂直分帶現象會影響溫度風化作用和生物風化作用的進行。山的陰坡和陽坡因為日照的條件不一樣,在陽坡一面通常溫度風化作用較為強烈。地下水的性質特徵、地球化學場、構造活動性等環境因素也都影響化學風化作用的進程。

廣告

岩體化學風化在空間上具有高度的非連續性,這種非連續性廣泛存在於從宏觀、細觀到微觀的所有尺度。宏觀結構面是化學風化最主要的發生場所;風化岩體內,新鮮岩塊被沿結構面內法線方向發育的腐蝕帶包圍,呈斑點狀分散於腐岩中。微縫等細觀損傷普遍存在於各類岩石中;化學風化從岩塊內不同空間位置的水力有效空隙向三維空間擴展,決定了細觀尺度上化學風化的非連續性。礦物溶解是在晶體中具有過剩表面能的缺陷位置優先發生,因而具有顯著的微觀非連續性。由於非連續特性,化學風化可增大水岩界面,提升礦物溶解反應的規模及速率。通過對既有損傷的擴展及在損傷空間堆積殘餘物,化學風化具有分離—裂化岩體、岩塊及造岩礦物的重要作用,這種作用可使以新鮮岩石為主的岩體大規模脫離母岩,而堆積於坡腳的岩石塊體在化學風化的繼續作用下,可裂解為更小的岩屑或礦物碎屑,為向水體搬運創造條件,從而極大地促進斜坡夷平及地貌重塑進程。
石材的化學風化石指石材在經受物理風化中同時還伴隨著化學
成分的變化,併產生了新物質,這種新物質破壞了石材的理化性能和外在的美觀。石材的化學風化主要類型如下。
(1)水溶性作用
石材中的礦物經水的浸泡后.在一定溫度下.可發生化學變化。這一過程也稱為石材的微粒水解。具體是岩石中的長石水解時.水分子中的H+咒換出長石中的鹼離子,11+離子進入石材的品格中生成新的鑽土礦物.例如正長石經水解后.形成高嶺石或鋁礬上
(2)氧化反應
主要是石材內的金屬礦物與氧發生化學反應使石材變色、酥鬆、裂隙等。在石材中最常見也是最易發生氧化反應的是鐵質礦石中的黃鐵礦、硫鐵礦.其氧化作川最為明顯。許多石材安裝之後,發生氧化反應之後出現黃銹、黃斑、流痕,時問長久后這些含鐵礦的局部會出現凹坑、裂紋.密集的地方會使強度下降。一些比較穩定的石材,在製作火燒板時因高溫使其中的鐵礦氧化.也會在以後逐漸發生氧化,所以說.火燒板在一定程度上會降低石材的使用強度。
(3)岩溶反應
通常碳酸鹽類石材(石灰石、大理石、白雲石、石灰華等)含有二氧化碳水的作用下。碳酸鈣逐漸溶解為鈣離子、碳酸根,在時間、溫度、壓力.尤其近年城市二氧化碳形成的大量酸雨催化作用下,溶於水的鈣會形成新的碳酸鈣沉積.形成石灰華:
在地質作用上,這一過程通常是極其漫長的。最明顯的是卡斯特地貌(在碳酸鹽地區).然而近年在城市石材裝修中越發明顯.表現石材的外觀是流白痕。裂隙、酥鬆。一些用石材建築的古迹都不同程度地發現此現象。
除此,因大氣中二氧化硫的增多,最終形成酸雨後,也對石材中的石膏、碳酸鎂、鉀、鈉鹽礦進行溶解、分離.最終形成沉積.對原有的石材都是一種破壞。
(4)生物化學反應
植物生存生成出的有機酸、磷酸、糞便、遺體等的化學物質都會對石材產生風化。
當然石材的風化並不是某一種單純反應,而是和物理風化、化學風化、生物風化交織在一起的。研究石材風化有利於利用科學的方法進行防治。

廣告